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Abstract: Magnesium (Mg) is a pivotal and very complex component of healthy aging in the
cardiovascular-muscle-bone triad. Low Mg levels and low Mg intake are common in the gen-
eral aging population and are associated with poorer outcomes than higher levels, including vascular
calcification, endothelial dysfunction, osteoporosis, or muscle dysfunction/sarcopenia. While Mg
supplementation appears to reverse these processes and benefit the triad, more randomized clinical
trials are needed. These will allow improvement of preventive and curative strategies and pro-
pose guidelines regarding the pharmaceutical forms and the dosages and durations of treatment
in order to optimize and adapt Mg prescription for healthy aging and for older vulnerable persons
with comorbidities.
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1. Introduction

Aging is a major risk factor for pathologies affecting the cardiovascular, muscle, and
bone domains, and is associated with an increased incidence of many chronic diseases,
such as muscle loss and sarcopenia, vascular, metabolic conditions, and osteoporosis. Loss
of bone (osteoporosis), of muscle (sarcopenia), impaired cardiovascular systems (including
calcification and arterial stiffness), and aging share common mechanisms [1]. These chronic
age-related diseases are intertwined and have molecular, physiological, and pathologi-
cal links and share risk factors and clinical implications [2]. A number of interventional
and therapeutic approaches are recommended for each of these pathologies, and guide-
lines/recommendations have been published by respective societies. Post-menopausal
osteoporosis affects millions of people worldwide and this public health problem will
increase in the coming decades [3,4]. It is characterized by bone loss and deterioration of
micro-architecture of the bone. Beyond first-time drug treatment with bisphosphonates,
non-pharmacological approaches with exercise, nutritional, and mineral supplements are
advised [5]. Osteoporosis often coexists with sarcopenia and cardiovascular disease [2].
Sarcopenia, a concomitant loss of muscle mass and muscle function, leads to an impaired
quality of life and an increased mortality [6,7]. Dietary approaches are important and
may play a role in its pathophysiology and prevention [8–10]. Osteoporosis and cardio-
vascular disease are also linked [11,12], as patients with a low bone mineral density or
an increased bone turn-over have a greater risk of cardiovascular morbidity and mor-
tality, and dietary approaches are also recommended [13,14]. Within this cardiovascular
disease-sarcopenia-osteoporosis triad, it is obvious today that apart from pharmacologi-
cal treatment and combined with it, non-pharmacological approaches, including mineral
intake, play a pivotal role to slow down the ailments of aging [5,15].

Magnesium (Mg), an intracellular cation, Mg2+, is one of the key micronutrients in the
body. It is linked to the metabolism of calcium and potassium and has numerous structural
and regulatory functions. It is involved in many enzymatic reactions and although an
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adapted diet should provide Mg daily needs, supplementation is frequent and Mg is
commonly bought over the counter to fight against fatigue or stress [16]. Aging is very often
associated with Mg deficiency and the Food and Drug Administration (FDA) recommends
a daily oral Mg intake of around 400 mg for males and 310 mg for females [17]. Aging and
Mg deficit are both associated with excessive production of oxygen-derived free radicals
and low-grade inflammation [18–20], and are probably involved in the development of
age-related chronic diseases.

This review aimed at studying Mg influences on each component of the triad and
at discussing how Mg could be a useful polyvalent tool in slowing down concomitant
pathological processes on cardiovascular, muscle, and bone systems. After discussing the
cardiovascular disease-sarcopenia-osteoporosis triad, this review evaluated Mg effects in
evidence-based medicine in order to identify possible bridges within this triad and how
Mg may be a common denominator. It also focused on the existing gaps concerning the
prescription and use of oral Mg in order to obtain a concomitant beneficial effect on the
components of the triad.

2. The Cardiovascular Disease-Sarcopenia-Osteoporosis Triad

Cardiovascular disease, sarcopenia, and osteoporosis occur in the course of aging
with a large impact on quality of life, mobility, morbidity, independence, and mortality [2]
(Figure 1).
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aging [20] at the root of the development of age-related chronic diseases. Aging patients may develop osteosarcopenia [21],
a combination of osteoporosis and sarcopenia; they may develop diminished calcification in osteoporosis with increased
arterial calcification, namely the calcification paradox [22]; they may also develop frailty, sarcopenia, and cardiovascular
disease [23]. These interactions participate in diminishing (down arrows) quality of life and independence and increasing
(up arrows) comorbidity and mortality in aging persons [1].
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2.1. Cardiovascular Disease

Increased life expectancy is accompanied by a rising prevalence of age-related car-
diovascular diseases, including hypertension, heart failure, atherosclerosis, endothelial
dysfunction, aortic calcification, myocardial infarction, and stroke [24]. Hypertension is
complex and the World Health Organization [25] reports that, worldwide, one in four
males and one in five females, totaling over a billion people, have hypertension, and that
the figures will double by 2050. Aging and hypertension are two independent risk factors
of cardiovascular disease, but have similar mechanisms in triggering cellular response,
molecular pathways, and gene expression. Oxidative stress, production of free radicals,
neuroendocrine, and genetic changes are involved. Cardiac changes with aging proceed,
however, at a slow pace, but involve all components of the heart and vasculature. They
manifest themselves clinically when alterations of cardiac physiology and function have
reached a pathological state [26]. Dysfunction of the endothelium, with its reduced produc-
tion/action of relaxing mediators, is pivotal in the pathogenesis of cardiovascular diseases,
especially in hypertension. A healthy endothelium is indeed more than just a mechanical
barrier, and modulates vascular tone by the synthesis and release of relaxing, vasodilating
(prostaglandins, nitric oxide (NO) . . . ), and contracting factors [27]. Endothelial dys-
function is one of the earliest indicators of cardiovascular dysfunction. Flow-mediated
dilation (FMD) is the most widely used method to study endothelial function, but is
operator-dependent, and new circulating markers of endothelial dysfunction, endothelial
microparticles, endocan, and endoglin, are being explored [28]. Arterial stiffness may also
be predictive of cardiovascular disease and pulse wave velocity (PWV) is considered the
gold standard to assess arterial stiffness [29]. Aortic valve calcification is the most common
valvular disease with high morbidity and mortality rates, and research still bears on factors
modulating the osteogenic differentiation of human aortic valve interstitial cells [22]. In
the context of the COVID-19 pandemic, pre-existing cardiovascular disease seems to be
linked with worse outcomes and increased risk of death in patients with COVID-19 [30].

2.2. Sarcopenia

Sarcopenia is a skeletal muscle disorder characterized by loss of muscle mass and
function. It is associated with physical disability, falls, fractures, morbidity and mortality,
poor quality of life, depression, and hospitalization [31,32]. Recommendations for health
care professionals [5,6] aim at an early detection and diagnosis in order to prevent or delay
adverse outcomes. The prevalence of sarcopenia is reported to be up to 29% for older
community-dwelling adults, up to 33% for individuals living in long-term care institutions,
and up to 50% for patients ≥80 years old [33]. Muscle mass and muscle strength decrease
with age and muscle dysfunction/sarcopenia is multifactorial. A number of age-related
factors are present in sarcopenic older adults, such as denervated motor units, hormonal
changes, inflammation oxidative stress, decline in physical activity, or malnutrition [34]. Re-
cent publications underline how COVID-19 infection may aggravate sarcopenia because of
the reduced physical activity and inadequate nutrient intake caused by social isolation [35].
A growing body of evidence on mitochondrial impairment in sarcopenia has been pro-
vided by both animal and human studies, as mitochondrial dysfunction is determinant in
age-related loss of skeletal muscle mass and strength [36]. To date, research focuses on the
impact of nutritional and pharmacological mitochondria-targeted interventions [36] and
on the development of biomarkers, use of drug and non-drug approaches with nutrition
and resistance exercise, and high grade clinical trials [37].

2.3. Osteoporosis

Osteoporosis is a multifactorial systemic skeletal disease characterized by increased
bone resorption, low bone mineral density, and structural deterioration in bone microarchi-
tecture [4]. With the rapid increase in average life expectancy worldwide, it has become
an important public health issue as the incidence rate increases with age and over 70% of
those over age 80 are affected [3], suggesting a dramatic increase of osteoporotic fractures
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in coming decades. As recently reported [3], the figures are impressive: over 50% of post-
menopausal white women will have an osteoporotic-related fracture, and 75% of those
with acute vertebral fracture may suffer from persistent back pain. Only 33% of senior
women who have a hip fracture will be able to return to independence. This bone loss
increases the risk of fragile and compression vertebral fractures, leading to pain, reduced
mobility, and a vicious circle of secondary fracture, impaired quality of life, and dimin-
ished autonomy, increased morbidity, and mortality [38]. Post-menopausal osteoporosis
is often called the “silent thief”, as the weakening of all bones is usually painless and
progresses slowly, over many years, without any clinical symptoms until a fracture occurs
and pain chronicization takes place. Bone integrity and pain outcomes are inconsistent and
osteoporosis diagnosis relies on established criteria and dual-energy X-ray absorptiometry
(DXA) measurement [4]. Acute sudden severe pain often signals the presence of a fracture
that will require a multidisciplinary approach in order to restore physical function, improve
overall conditioning, bring pain relief, and prevent future fractures. Osteoporotic fractures
have a medical cost, but also an economic and societal one, and many fractures could
be avoided through early diagnosis. Medications approved for osteoporosis by the US
Food and Drug Administration (FDA) and the European Medicines Agency (EMA) are
antiresorptive drugs (bisphosphonates, denosumab, selective estrogen receptor modula-
tors (raloxifene), anabolic agents derived from parathyroid hormone (teriparatide), and
romosozumab, an anti-sclerostin antibody. These therapies are often taken on a 6–10 years
term, and are effective in reducing the risk of fractures [39]. Osteoporosis management has
been particularly difficult in the COVID-19 pandemic with the disruption to the provision
of health care globally, including requirements for social distancing [40].

3. Cross Talks in the Cardiovascular Disease-Sarcopenia-Osteoporosis Triad

Deep and conceptual interactions exist between the components of the triad [2]
(Figure 1). Cardiovascular disease and osteoporosis share common pathogenetic mech-
anisms: patients with osteoporosis have higher levels of calcification than those with
normal bone mineral density, and vascular calcification is related to a higher risk of frac-
ture [11,12,41,42]. There is a continuum of disturbed and deviant mechanisms, termed “cal-
cification paradoxes”, where aortic valve interstitial cells re-differentiate into an osteoblast-
like phenotype, the pivotal cellular mechanism of aortic valve calcification [22]. Vascular
calcification can impact skeletal muscle function, perfusion, and oxygen delivery to the
muscle [34]; it is associated with five-year decline in sarcopenia (evaluated by hand grip
test) in older women [43]. Cardiac dysfunction is also associated with sarcopenia; preva-
lence of sarcopenia in chronic heart failure amounts to up to 20%, and may progress into
cardiac cachexia [44].

Osteosarcopenia has been described as a phenotype when osteoporosis and sarcopenia
are present; it is a multifactorial condition linking bone and muscle, including genetics,
age, obesity, and inflammation [21,45]. Frailty, a dysfunction of homeostatic mechanisms
with reduction of the physiological reserve, is also predicted by cardiovascular disease [46],
osteoporosis [47], and by muscle wasting [44]. Furthermore, sarcopenia in combination
with frailty doubles the mortality risk of each condition [48].

Chronic sterile low-grade inflammation has also emerged as a common denominator
to age-related diseases, with the concept of inflamm-aging [49], a landmark of frailty.
With age, a vicious circle of production of inflammatory mediators in response to chronic
endogeneous and exogeneous stimuli is set in motion and leads to inflamm-aging and
the development of comorbidities including cardiovascular disease, osteoporosis, and
sarcopenia [49].

4. Magnesium and the Triad

Mg has multiple regulatory functions in the cardiovascular-muscle-bone triad
(Figure 2).
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inhibits (red −) molecular ligands. Mg enters the cell via the TRPM7 receptor (and other channels). It is a physiological
blocker of the NMDA receptor. At the bone level, regeneration and osteogenic differentiation are facilitated by the
activation of Wnt/β-catenin [50], Integrins [51], Notch-1 [52], and the inhibition of TGF-β [53]. At the cardiovascular level,
diminution of calcification, improved endothelial function, and fibrosis are facilitated by the activation of angiotensin II
receptor [54], Wnt/β-catenin [55], and the inhibition of TGF-β [56]. At the muscle level, myogenic differentiation and
improved performance are facilitated by the activation of mTor [57] and the inhibition of Wnt/β-catenin [55].

4.1. Magnesium and Cardiovascular Function

A number of prospective studies have analyzed the link between Mg and cardiovas-
cular disease, vascular calcification, vascular smooth muscle tone, endothelial function,
hypertension, mortality, or prevention [58–62].

In vitro studies suggest the protective role of Mg on vascular calcification. Mg in-
fluences vascular calcification by impairing hydroxyapatite crystal growth [63]. It has
also been shown in vitro to inhibit Wnt/β-catenin activity and to reverse the osteogenic
transformation of vascular smooth muscle cells [55]. Low Mg levels are associated with
vascular calcification and Mg enters the vascular smooth muscle cells through the Transient
Receptor Potential Melastatin 7 (TRPM7) channel (also via other channels), a channel
also used by other ions like calcium or zinc. Angiotensin II, the vasoconstricting peptide
hormone, stimulates TRPM7 activity, and prevents vascular calcification via the influx of
Mg, the inhibition of the canonical Wnt/β-catenin signalling pathway and the induction of
ERK1/2 MAPKinase [54].

In humans, studies have explored the correlation between Mg blood levels and mortal-
ity [58], cardiac disease [64], vascular calcification [59], endothelial function [62], stroke [65],
and revascularization [66].

The relationship between Mg and cardiovascular disease mortality is complex. Low
serum Mg levels have been shown to be associated with increased cardiovascular disease
(CVD) and all-cause mortality in the general population [64]. A recent meta-analysis of
prospective studies (including over 1 million participants) was conducted to examine the
association of total, supplemental, and dietary Mg intakes with the risk of CVD mortality
risk, and showed no association with a lower CVD mortality risk. The study, however,
showed that consumption of Mg from dietary sources may be beneficial in reducing all-
cause and cancer mortality [67]. The role of dietary Mg intake in reducing CVD mortality
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has been described with a dose-response relationship irrespective of gender [68] and only
found among women [69]. Drinking water Mg level is associated with the risk of CHD
mortality (RR = 0.83, 95% CI = 0.69–0.98) [70]. Cardiovascular mortality has been studied
in patients with chronic kidney disease, and the relationship between Mg blood levels
and mortality is not as clear [71]. A five-year prospective cohort study showed that lower-
serum Mg was associated with a higher risk of cardiovascular and all-cause mortality in
the peritoneal dialysis population, especially among female patients [72]. In patients with
chronic kidney disease, both hypo and hypermagnesemia were associated with higher all-
cause mortality, but not with an increased risk of CKD progression [73]. Hypermagnesemia,
but not hypomagnesemia, at the time of hospital admission was associated with increased
1-year mortality among hospitalized patients, probably linked to latent chronic disease [74].
A recent meta-analysis showed that Mg concentration is inversely associated with all-cause
mortality and cardiovascular mortality and events [75]. A score (Magnesium Depletion
Score (MDS)) has been recently validated to predict the Risk of Systemic Inflammation and
Cardiovascular Mortality among US Adults, and to identify individuals with Mg deficiency
who may benefit from increased intake of Mg [76].

Cardiac adverse events are common among aging patients. The possible role of hy-
pomagnesaemia as a cardiovascular risk factor may be explained by the development
and amplification of atherosclerotic plaques and coronary spasm. Serum Mg in random-
ized patients with acute myocardial infarction is indeed lower compared with controls
in some studies [77], but hypermagnesemia did not prevent the occurrence of cardiac
adverse events [78] in a large population of stroke patients. Several prospective studies
report an inverse association between elevated serum Mg level, elevated Mg intake, and
cardiovascular disease [64].

Mg, like other electrolytes (potassium, calcium . . . ), has an effect on the electrical
conduction of the heart. Mg deficiency is associated with heart rhythm abnormalities [79]
and atrial fibrillation [80], and Mg supplementation has been shown to be useful in atrial
fibrillation [81], arrythmia [82], and torsade de pointes [83]. Oral Mg supplements also
improved survival outcome in patients with congestive heart failure [84].

While iv MgSO4 in the immediate postinfarction period in a hundred patients is cardio-
protective with a reduction of arrhythmias, pump dysfunction, and death [77], larger stud-
ies do not show this causal link. Treatment of acute stroke patients with Mg did not result in
a reduction in the number or severity of cardiac-serious adverse events in the randomized
FAST-MAG trial [78], on mortality outcomes in the MAGIC (6000 participants [85]), ISI 4
trial (58,000 patients) [86], RCTs, or in the US Registry for myocardial infarction [87] where
Mg use was associated with increased mortality.

Following cardiac revascularization, the effect of MgSO4 was also studied in a meta-
analysis on cardiovascular events, which showed that the total rate of cardiac arrhythmia
was significantly lower in the group receiving MgSO4 than the group receiving the placebo.
It showed also that Mg consumption would decrease ventricular (in 15 RCTs) and supraven-
tricular arrhythmias (in 14 RCTs) compared with the placebo group [66].

Correlations have been described between low serum Mg and coronary artery calcifica-
tion after multiple adjustments in a population at low risk of cardiovascular disease [65,88].
Mg dietary intake has been the focus of attention for a number of years, as inadequate
intakes of Mg have been underlined for the last two decades [89]. Dietary Mg intake and
improved cardiac health has been shown in the Framingham Offspring Study [90], with
Mg intake >320 mg/day leading to a 34% lower risk of cardiovascular disease, but not
in other studies [64]. Improved mortality [69] and lesser vascular calcification are related
to Mg dietary supplementation [91]. An updating of adult Mg requirements has been
recently suggested in 2021, as mean body weight has increased over the last ≥20 years [92].
High Mg intake levels are also associated with a lower risk of major cardiovascular disease
(diabetes, hypertension, metabolic syndrome) and stroke [59].

Mg has also an impact on the endothelial function [62,93,94], which is itself linked to
blood pressure changes. Oral Mg supplementation in randomized clinical trials (RCTs)
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resulted in a significant improvement of endothelium-dependent brachial artery flow-
mediated vasodilation (a marker of endothelial function) in patients with comorbidities: in
those with coronary artery disease [95], obesity [96], diabetes [97], in those on hemodialy-
sis [98,99], or in hypertensive [80] individuals for durations of 6 months to 2 years.

Mg supplementation has shown heterogenous effects on hypertension, moderate in
some studies [69,90], and a meta-analysis showed that 1–6 months of Mg supplementation
resulted in a reduction in systolic blood pressure (4 mmHg) and in diastolic blood pressure
(2 mmHg) [60]. With a dietary Mg range of 96–425 mg/day, a statistically significant inverse
association with hypertension risk has been shown, with a 100 mg/day increment in Mg
intake being associated with a 5% reduction in the risk of hypertension [69]. Intervention
studies with dietary supplementations have used organic and inorganic forms of Mg, oxide,
chloride, citrate, diglycine, aspartate, pidolate, citrate, lactate, and etc., with a range of
250 to 1800 mg per day, for 30 days up to 2 years depending on studies. The most recent
review [60] proposed a classification of patients in order to overcome the conflicting results
concerning Mg supplementation in hypertension. Oral Mg (≥240 mg/day) safely lowers
blood pressure in uncontrolled hypertensive patients taking antihypertensive medications,
while >600 mg/day Mg is required in untreated hypertensives. A supplementation of
<600 mg/day may help to improve other risk factors without antihypertensive medication
side effects [60].

Mg is ubiquitous in affecting vascular function and protecting against excitotoxicity
mediated by NMDA receptors. Mg supplementation has been used for decades in clinics
for eclampsia and neurological disorders [100], and is safe and inexpensive. However, the
neuroprotective effect of Mg supplementation on stroke is still controversial and different
clinical approaches and routes of administration are described, ranging from intravenous
to more invasive Mg administration and combination therapies. Several prospective
studies have reported an inverse association between Mg intake/supplementation (and
calcium and phosphorus) and the risk of stroke [101,102]. Mg is suggested to act in a
dose-dependent manner: for each 100 mg/day, the risk is reduced by 2% [65]. However, a
recent study in 6411 interviewed participants (aged 45–79 years) free of stroke at baseline
suggested that only dietary calcium intake, but not Mg, is associated with a lower risk
of stroke in Chinese adults, particularly in men [103]. The observational nature of the
studies and lack of RCTs is a limiting factor. Intravenous (iv) Mg supplementation (MgSO4)
versus placebo has been studied in large clinical trials [104], like a large multicenter trial
in 2589 patients that failed to demonstrate a real benefit [105], or a randomized phase
three trial with prehospital initiation of Mg in 857 patients that did not improve disability
outcomes at 90 days [106]. Mg supplementation for cerebral ischemia has been adminis-
tered with more invasive techniques (in the lateral ventricle, combined with hypothermia
therapy, or with intracarotid Mg supplementation and selective hypothermia). A recent
paper showed that subintracisternal MgSO4 infusion improves clinical outcomes without
complications in patients with poor-grade subarachnoid hemorrhage, with additional
effects when combined with intravenous hydrogen therapy [107].

4.2. Magnesium and Muscle

Sarcopenia is defined as a combination of low muscle mass with low muscle function,
with diminished muscle strength, muscle quality, and quantity [6,108,109]. It affects 10% to
50% of older persons and contributes to physical disability, impaired quality of life, and
mortality. Inflamm-aging, dysregulation of immunosenescence, and sedentary lifestyles all
participate in muscle wasting. Muscle mass loss increases over the years, reaching up to
50% in persons >80 years old. Nutrition may influence the development of sarcopenia [8],
and older persons are often at nutritional risk [110].

Intramuscular Mg pool (27% of total body Mg) diminishes with age, and this influences
muscle health since Mg, as with calcium, is involved in muscle contraction/relaxation.
Animal studies show that Mg has an impact on muscle performance [6,109] and that a
number of signalling pathways are involved, with muscle stem cells at the heart of muscle
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regenerative capacity. A recent study in animals showed that Mg, via the mTor receptor,
the protein kinase mechanistic target of rapamycin, facilitates myogenic differentiation,
improves aged muscle performance, and conserves muscle mass and strength [57]. A
mild Mg deficiency may change the expression of genes critical for muscle physiology,
including energy metabolism and muscle regeneration, even before the emergence of
muscle dysfunction [111].

In humans, a number of publications have explored the links between Mg blood lev-
els/dietary intake with muscle and sarcopenia [8,9,112–119]. Among seven cross-sectional
studies [9,113–116,119,120], five underline a low Mg dietary intake in patients with sarcope-
nia [113,114,117,119,120]. Significant lower intakes were found in those with sarcopenia
compared those with no sarcopenia in 227 community-dwelling older adults, but this
difference was not reflected in a difference in serum Mg levels, probably because Mg is
strictly regulated by the kidney, gastrointestinal tract, and bone [120]. Mg intake was
6% lower in 66 sarcopenia patients matched to 66 non-sarcopenic persons [114]. In a
cross-sectional study issued from the UK BioBank, the highest tertiles of intake for Mg
were all associated with the lowest likelihood of sarcopenia [113]. The EPIC Norfolk
cohort study [117] showed significant positive trends in fat-free mass measures across
Mg dietary intake for men and women, but this was not reflected in serum Mg levels.
In a recent study focusing on frailty and Short Physical Performance Battery to measure
physical function, non-frail participants “at risk of malnourishment” showed a signifi-
cantly lower intake for Mg (392.2 ± 83.9 mg/day compared with those “not at risk of
malnutrition”), 451.3 ± 111.6 mg/day (p = 0.016) [119]. An inverse correlation between
dietary Mg with greater muscle mass and muscle power was also observed in the UK
Biobank, EPIC-Norfolk, Tasmanian cohorts, and the TwinsUK registry [11,115,117,118].
One Italian study showed a significant positive association of serum Mg concentration with
muscle performance in 1453 community residents [112]. Finally, only one trial studied Mg
supplementation in 139 healthy older women (not sarcopenic) [116], showing that 300 mg
Mg oxide supplementation for 12 weeks (with weekly exercise) resulted in better muscle
and physical performance. A significant improvement of total Short Physical Performance
Battery scores, including five-time chair-stand, tandem balance evaluation, and 4 m walk-
ing speed was observed, but this concomitant physical activity prevented conclusions
bearing on the causal role of Mg supplementation. In the light of these observations, there
is a need for RCTs to elucidate the potential benefits of mineral intake to prevent and/or
treat sarcopenia and support healthy aging.

4.3. Magnesium and Bone

Mg in bone represents 60% of total-body Mg and plays a role in bone turn-over [5].
Studies carried out in animals or in vitro have shown a significant association between Mg
and bone mineral density [121–123], with a direct or indirect effect of Mg [124–127]. The
regulatory mechanisms led by Mg and its transporters across the membrane, in mineraliza-
tion, and in osteoblast generation are, however, not fully understood. Mg ions promote
osteogenic differentiation of mesenchymal stem cells [128], but high concentrations of
extracellular Mg ions may inhibit mineralization [129]. Solute carriers across the mem-
brane [129], parathyroid hormone, cytokines, TGFβ [53,56], Wnt/β-catenin [50], integrins,
MAP kinases [51], and Akt-mTor [130] signalling pathways are all known to play a role in
osteogenic differentiation. Mg probably uses these pathways to modulate bone ossification,
but the fine tuning of this modulation with physiological Mg levels or supplemented Mg
may suggest different mechanisms. For example, Wnt signaling is central in osteogenesis
and in determining the transformation of stem cells into mature osteoblasts. Activation
of the canonical Wnt signalling pathway results in nuclear translocation of β-catenin,
hence regulating target gene expression [130], and Mg has been shown, in vitro, to induce
an osteogenic effect in the bone marrow space by activating this pathway [50]. In ani-
mals, severe Mg deficiency compromises systemic bone mineral density and aggravates
inflammatory bone resorption [131]. However, Mg supplementation has been shown to
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increase mesenchymal stem cell proliferation in a dose-dependent manner and to promote
osteogenic differentiation and mineralization with activation of Notch1 signalling, but with
no increase in the canonical Wnt/β-catenin pathway [52].

In humans, a few reviews have updated knowledge on Mg and bone health [5,132,133].
A recent narrative review [133] identified 28 studies since 2009 on the link between Mg
and bone in adults, mostly postmenopausal women, considering blood Mg values, Mg
intake, and Mg supplementation. Lower blood Mg values are globally associated with
osteoporosis, and 30–40% of the analyzed studies reported patients with hypomagnesemia.
Seven prospective/observational studies have focused on the link between Mg blood levels
and bone health, as a primary outcome, in postmenopausal osteoporosis and/or in those
>60 years old [123,134–139]. Compared with controls or osteopenia persons, osteoporotic
women had globally lower serum Mg concentrations, lower than the reference range or
remaining within the reference range with or without statistical difference. The different
reference ranges for serum Mg may introduce a methodological bias between studies,
especially on the minimal value of the range, i.e., 1.9–2.5 mg/dL [136], 1.6–2.4 mg/dL [123].
A link between magnesemia and fracture risk has been shown in the literature [137,138].
Lower-than-recommended daily Mg intake (265 mg/day in many studies) is linked to a
lower bone mineral density, and a higher fracture risk is observed [133].

Eight studies, prospective [135,137,140–142] and cross sectional [9,143,144], have
studied the relationship between Mg dietary intake and bone health in persons with
postmenopausal osteoporosis and/or those >60 years old. Evaluation was carried out
with a questionnaire, food diary, or Food Frequency Questionnaire. These showed a
lower-than-average dietary Mg intake and a positive association between Mg intake
and bone mineral density, or specific markers of bone resorption like type-I collagen
C-Telopeptide (CTx) [140]. The different reference ranges for the dietary Mg intake re-
quirement (265 mg/day [140], cut off values (<206 mg/day) [141], or use of quintiles [9]
for analysis limit comparisons between studies. Studies performed over the last decade
have shown that 20% of the general population consume less Mg than recommended, and
have a lower bone mineral density and a higher fracture risk [9,133,137,142]. Supplemen-
tation studies in persons with postmenopausal osteoporosis and/or those >60 years old
are limited. The case-control (n = 31 vs. 23 controls [145]) (n = 26 vs. 7 controls [146]),
retrospective (n = 53 (6 only with Mg) [147]), and only one randomized (n = 20 supple-
mented, 10 unsupplemented with no placebo [148]) studies showed an improvement of
bone-turnover markers, of bone mineral density, and prevention of fractures [141,145].
Dietary supplementation has used Mg citrate (1830 mg/day for 1 month [148]), or oxide
(250–750–250 mg/day for 2 years [145] or 1200 mg/day [146] for 6–12 months). The paucity
of RCTs calls for more trials in older persons, concomitantly taking into account Mg blood
levels, baseline Mg intake, standardized supplementation, duration of supplementation,
and menopausal status with a double blind and placebo approach.

5. Prospects of Mg in the Cardiovascular Disease-Sarcopenia-Osteoporosis Triad

Osteoporosis, cardiovascular disease, and the development of muscle aging and
degeneration develop with aging and have consequences on the risk of falls, fracture, and
quality of life [23,149]. Microenvironmental factors involving protein ligands like Notch,
Wnt, mTor, myokine, myostatin, fibroblast growth factor, and minerals like Mg are all
at play in each component of the triad. Mg is a key element in these three domains, as
shown by fundamental research and cross-sectional, case-control, and intervention studies
(Figure 2). Molecular, animal, and clinical studies show correlations between Mg and
the components of the triad. After Mg entry in the cell via the TRPM7 receptor (and
other channels), it may switch on or off the Wnt/β-catenin signalling pathway, leading
respectively to improved osteogenic differentiation and diminished vascular calcification.
It also disrupts the TGFβ mediated-smad pathway improving fibrosis and activates mTor,
leading to myogenic differentiation and halting muscle mass loss, with other interactions
and molecular cascades that are still being explored. Overall, the message arising from
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the literature is that circulating Mg, dietary Mg intake, or Mg supplementation in healthy
persons, postmenopausal women, older persons, patients with chronic comorbidities
like chronic kidney disease, diabetes, hypertension, or coronary heart disease converges
towards a beneficial effect on bone, the cardiovascular system, and muscle. Preventive
measurement of Mg levels has also been underlined [150]. Mg appears, therefore, as an
interesting molecule for preserving healthy aging and the integrity of the triad. The number
of RCTs is, however, limited with oral Mg (one [116] in sarcopenia, one [148] in osteoporosis,
a few in endothelial function [62], with the bulk of RCTs being in hypertension [60]), and
with iv Mg SO4 in acute situations like stroke and infarction. Beneficial tendencies of Mg
described in RCTs confirm the positive findings in non-RCTs and observational studies,
but a number of gaps are present in the literature.

First, a large heterogeneity of the methodologies used in the different trials is observed.
Different populations, pathologies, missing information on severity of the patients’s disease,
different oral Mg chemical forms, or different settings are reported. A recent review [151]
observed that eight chemical Mg forms have been studied head-to-head for bioavailability,
and concluded that second-generation organic salts (citrate, pidolate, gluconate) are more
bioavailable than first-generation inorganic salts (carbonate, chlorure, and oxide). It also
stresses that third generation organic salts (bisglycinate, glycerophosphate) are more
bioavailable than the other two generations. However, no study compared head-to-head
Mg pharmaceutical forms in any of the conditions of the triad. This point is particularly
important for prescribing Mg: satisfactory bioavailability of Mg salts does not allow us
to deduce that this would lead to increased efficacy on bone, cardiovascular, or muscle
domains. Another gap is that besides beneficial effects, Mg adverse events, although
usually minor, are poorly reported in the studies and in real life, while there is a large use
of Mg, prescribed or obtained over the counter or on the internet. Likewise, Mg blood
levels are not always reported unless when specifically focused as an end point of the
study. The occurrence of hypermagnesemia needs also to be also considered, especially
in the context of long-term supplementation for diseases affecting the triad. High Mg
concentration has been shown in vitro to inhibit the mineralization process and to modulate
gene expression of mesenchymal stem cells during osteogenic differentiation. Involvement
of Mg transporter SLC41A1 [103] and of Mg substitution for calcium in the hydroxyapatite
structure [152] has been suggested.

Studies also vary in Mg daily dosages and the duration of treatment, making it difficult
to identify a reference salt and an optimal duration of Mg supplementation. So far, no
universal dosage has been defined. Clinical trials aimed at defining an optimal dosage of
Mg or testing different generations of Mg salts at recommended FDA dosages are necessary
to determine whether differences in efficacy occur depending on the generation used. Such
an approach would help therapeutic strategy not only in osteoporosis, cardiovascular
disease, and muscle impairment, but also when comorbidities like bone fractures, stress,
chronic pain, psychological symptoms, and impaired quality of life are present, as is often
the case in aging persons [16]. Such studies could lead to recommendations for using
Mg preventively, all the more since Mg deficiency, because of poor diet intake or other
pathologies, is associated with aging. More information is also needed for a curative
approach in patients, as in diabetes, obesity, or in chronic kidney disease.

The use of Mg could also be valuable for other comorbidities of the triad, like pain.
As regards the inflamm-aging concept, within the cardiovascular disease-sarcopenia-
osteoporosis triad and in other concomitant age-related diseases, a number of comor-
bidities, including other rheumatic diseases like osteoarthritis [32], are painful, and pain
has a dramatic impact on the quality of life and independence of older persons. For ex-
ample, the combined presence of several painful pathologies like osteoporosis, diabetic
neuropathy, sarcopenia, and osteoarthritis traps an older patient in a vicious pain circle.
Muscle weakness, axial kyphosis, contraction in paravertebral muscles to maintain posture,
loss of stature, and bone loss all contribute to pain, disability, fracture occurrence, and
further risk of new fractures and loss of autonomy. Patients may also have orthopedic
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surgery after a fracture and experience post-surgical pain, another risk factor for the devel-
opment of chronic and neuropathic pain [153], with peripheral and central mechanisms of
pain at play. The use of Mg in pain relies on the fact that Mg is the physiological blocker
of the N-Methyl-D-aspartate (NMDA) receptor, and controls its hyperexcitability in pain
chronicization and in learning, cognitive, and emotional processes [151]. The molecular
cascades described in pain are also thought to impact sleep, anxiety, and fatigue [151,154].
A recent review [151] reported a modest effect of Mg in chronic pain but also stressed that
there is to date in the literature no RCT evaluating the benefits of Mg supplementation
on pain occurring in osteoporosis, rheumatic disease, or sarcopenia. Finally, Mg has been
suggested as a supportive treatment of COVID-19, especially in critically ill patients [155].

6. Perspectives for Future Trials on the Triad

To better understand the role of Mg on the cardiovascular-muscle-bone triad, the
first step would be to identify the concomitant links between the three components of
the triad in a longitudinal study, with a homogeneous population, and then apply Mg
supplementation on the set model. The choice of the population as a mode of entry into
the triad is determinant for reliable findings and subsequent extrapolation. Cardiovascular
disease exploration allows a number of objective measures (blood pressure, FMD, PWV,
arterial calcification . . . ), but is an umbrella term for a large array of pathologies that may be
present at different degrees in the same person, some linked to high mortality. Sarcopenia
is also heterogeneous, but benefits today from consensual evaluation criteria for follow-
ups [7]. The entry within the triad via osteoporosis/post-menopausal osteoporosis allows
objective bone evaluation (DXA) and accessible quantification at baseline and at follow-
ups (bone turner markers); in addition, endpoints including cardiovascular and muscle
performance parameters could be evaluated. A chronic disease like osteoporosis slowly
progresses over years and would allow for the identification of the chronological trajectories
of the three components of the triad over 3 to 4 years. Concerning Mg supplementation,
a RCT in osteoporotic patients may be carried out in cross-over mode or in two or three
parallel groups (requiring more participants), versus placebo or a second formula, with a
primary endpoint (bone resorption marker like CTx, FMD, muscle mass, muscle function
. . . ), chosen according to the recruitment facilities, the needed number of persons, and
the setting. The choice of the Mg formula, dosage, and duration of treatment relies on
positive findings discussed in the literature. As mentionned, there is no face-to-face study
of different Mg formulae, no systematic description of Mg adverse events in the studies,
and no recommended, efficient formula. According to the literature, it is reasonable at least
to replenish Mg depleted stores with oral Mg, as the aging population has a lower-than-
recommended intake and often hypomagnesemia, iv MgSO4 applying for acute rather
than chronic situations. The studies with oral Mg show a large range of dosages, formulae,
and combinations. According to Mg recommendations in blood pressure and data on bone
and sarcopenia [92,145], a possible protocol could be 300 to 750 mg/day elemental Mg
for a duration of a few months to one year, including in the trial a second group taking
a different formula/dose/increasing dose and/or duration, with surveillance of adverse
events. Such a combination of a longitudinal study and a Mg supplementation RCT could
allow us to identify how Mg may modulate in real life age-related chronic diseases for
healthier aging.

7. Conclusions

Mg is a pivotal and very complex component of healthy aging in the cardiovascular-
muscle-bone triad. Low Mg levels and low Mg intake are common in aging, and are associ-
ated with poorer outcomes than higher levels, including vascular calcification, endothelial
dysfunction, osteoporosis, or muscle impairment/sarcopenia. While Mg supplementation
appears to reverse these processes and improve better health prospects in the triad, more
RCTs are needed. These will aid in improving preventive and curative strategies, proposing
guidelines regarding the pharmaceutical forms, the dosages and durations of treatment, in
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order to optimize and adapt Mg prescription for healthy aging and for older vulnerable
persons with comorbidities.
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